期刊检索

  • 2025年第57卷
  • 2024年第56卷
  • 2023年第55卷
  • 2022年第54卷
  • 2021年第53卷
  • 2020年第52卷
  • 2019年第51卷
  • 2018年第50卷
  • 2017年第49卷
  • 2016年第48卷
  • 2015年第47卷
  • 2014年第46卷
  • 2013年第45卷
  • 2012年第44卷
  • 2011年第43卷
  • 2010年第42卷
  • 第1期
  • 第2期

主管单位 中华人民共和国工业和信息化部 主办单位 哈尔滨工业大学 主编 李隆球 国际刊号ISSN 0367-6234 国内刊号CN 23-1235/T

期刊网站二维码
微信公众号二维码
引用本文:郑文忠,曹棒,郑博文,王英.钢筋混凝土板柱中节点冲切破坏面割线倾角研究[J].哈尔滨工业大学学报,2025,57(5):88.DOI:10.11918/202312024
ZHENG Wenzhong,CAO Bang,ZHENG Bowen,WANG Ying.Research on secant inclination angle of punching failure surface of reinforced concrete interior slab-column connections[J].Journal of Harbin Institute of Technology,2025,57(5):88.DOI:10.11918/202312024
【打印本页】   【HTML】   【下载PDF全文】   查看/发表评论  下载PDF阅读器  关闭
过刊浏览    高级检索
本文已被:浏览 10次   下载 16 本文二维码信息
码上扫一扫!
分享到: 微信 更多
钢筋混凝土板柱中节点冲切破坏面割线倾角研究
郑文忠1,2,曹棒1,2,郑博文1,2,王英1,2
(1.结构工程灾变与控制教育部重点实验室(哈尔滨工业大学),哈尔滨 150090; 2.土木工程智能防灾减灾工业和信息化部重点实验室(哈尔滨工业大学),哈尔滨 150090)
摘要:
为考察板受拉纵筋屈服的板柱节点冲切破坏情况,提出一种新的试验方案,该方案能够在板自由端施加力偶和板周边施加竖向荷载。基于所提试验方案,完成了3个冲跨比和相对受压区高度不同的板柱节点冲切试验。结果表明:3个试件达到峰值荷载时,板受拉纵筋在柱边处均已屈服;板受拉纵筋配筋率从1.04%增加到1.25%,冲切破坏面割线倾角从46.3°降低到39.4°。基于本文和收集到的板柱节点冲切试验数据,建立考虑冲跨比、混凝土轴心抗压强度、板受拉纵筋配筋率和板有效高度影响的板柱节点冲切破坏面割线倾角计算公式。并给出考虑冲跨比、相对受压区高度和冲切破坏面割线倾角影响的板柱节点受冲切承载力计算公式。
关键词:  板柱中节点  冲切破坏面  割线倾角  冲跨比  受压区高度  受冲切承载力
DOI:10.11918/202312024
分类号:TU375
文献标识码:A
基金项目:国家自然科学基金(52078162)
Research on secant inclination angle of punching failure surface of reinforced concrete interior slab-column connections
ZHENG Wenzhong1,2,CAO Bang1,2,ZHENG Bowen,1,2,WANG Ying,1,2
(1.Key Lab of Structures Dynamic Behavior and Control (Harbin Institute of Technology), Ministry of Education, Harbin 150090, China; 2.Key Lab of Smart Prevention and Mitigation of Civil Engineering Disasters (Harbin Institute of Technology), Ministry of Industry and Information Technology, Harbin 150090, China)
Abstract:
To investigate the punching failure of slab-column connections in cases where the longitudinal tensile reinforcement of the slab yields, a novel experimental approach is proposed. This experimental setup facilitates the application of bending moments at the free end of the slab and vertical loads around the perimeter of the slab. Following this experimental design, three slab-column connection punching tests were conducted, each with varying punching span ratios and relative compression zone heights. The findings from the tests reveal that, when the specimens reached peak loads, the longitudinal tensile reinforcement in the slab had yielded near the column edge. Additionally, an increase in the ratio of longitudinal tensile reinforcement from 1.04% to 1.25% corresponded to a decrease in the secant inclination angle of the punching failure surface from 46.3° to 39.4°. Building upon the data from this study and compiled punching tests, a calculation formula was developed to determine the secant inclination angle of the punching failure surface, considering the punching span ratio, concrete compressive strength, longitudinal tensile reinforcement ratio, and slab effective depth. Furthermore, a calculation formula for the punching capacity of the slab was established, taking into consideration the punching span ratio, relative height of the compression zone, and secant inclination angle of the punching failure surface.
Key words:  interior slab-column connections  punching failure surface  secant inclination angle  punching span ratio  compression zone height  punching capacity

友情链接LINKS