Abstract:The interaction of atoms in the Si/Ge superlattice is described by using Stillinger-Weber potentials yield intermolecular energy and the heat transport system for Si/Ge superlattice is built up.The dependences of Si/Ge superlattice thermal conductivity on period length,number of periods and temperature are investigated by non-equilibrium molecular dynamics(NEMD) simulation.The results of calculations show that the thermal conductivities increase with an increase in period length and the number of periods.Because of the effects of thermal boundary resistance offered by interfaces,the temperature drop across the interface closest to the hot reservoir is the highest.In addition,the thermal conductivities also increase with the increasing of temperature within the range from 200 K to 600 K.Compared with that of the corresponding SiGe alloy,the thermal conductivities of Si/Ge superlattice are much smaller.