Abstract:The existing graph-construction methods for graph optimization-based SLAM are summarized. The SLAM methods can be divided into three main classes, Kalman filter-based, partical filter-based and graph optimization-based, and the advantages and disadvantages of each class are overviewed. Moreover, there are mainly three graph modeling methods for the graph optimization-based SLAM problem, namely dynamic Bayesian network (DBN)-based model, factor graph-based model and Markov random field-based model. The key techniques of the front-end stage in graph optimization-based SLAM method, which mainly include data association between consecutive frame and loop closure detection, are discussed. Some newest research achievements on feature extraction, matching method, motion estimation, loop closure detection are introduced.