Analysis of the functional bacteria community in partial nitrification reactor for low strength sewage treatment at ambient temperature
CSTR:
Author:
Affiliation:

(1.Hunan Province Key Laboratory of Pollution Control and Resources Reuse Technology( University of South China), 421001 Hengyang, Hunan, China; 2.Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering (Beijing University of Technology), 100124 Beijing, China; 3.Architectural Design Institute, China Academy of Building Research, 100013 Beijing, China; 4.State Key Laboratory of Urban Water Resource and Environment (Harbin Institute of Technology), 150090 Harbin, China)

Clc Number:

X172

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Partial nitrification (PN) process was successfully developed in a plug flow reactor fed with low strength sewage at ambient temperature (18-21.5℃). For better detecting the efficiency and mechanism of the partial nitrification process in the PN reactor, ammonia, nitrite, and nitrate were detected firstly, subsequentially the functional bacterial community in the reactor was also investigated at microbial level. The sludge microstructures were detected by scanning electron microscopy (SEM), and the microbial characteristics was studied via fluorescence in situ hybridization (FISH), denaturing gradient gel electrophoresis (DGGE), cloning and sequencing analyzing. The DO concentration was maintained between 0.1 to 0.6 mg/L, to enhance AOB competition superiority. After 80 days continuous operation, PN reactor achieved nitrite accumulation rate of 100% and effluent NO2--N to NH4+ -N ratio achieved 1.11. SEM results showed that spherical bacteria were the predominant bacteria in partial nitrifying sludge. FISH results showed the proportion of AOB and NOB were 37.3% and 4.4%, respectively. Bacterial DGGE and sequencing results indicated that six dominant bacteria coexisting in the PN reactor, among which Nitrosomonas sp. were the main AOB species.Those multiple functional bacteria contributed to the nitrogen removal in PN reactor.

    Reference
    Related
    Cited by
Get Citation
Related Videos

Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:January 27,2015
  • Revised:
  • Adopted:
  • Online: March 03,2016
  • Published:
Article QR Code