Abstract:In order to enhance mission flexibility, reduce launch preparation, and achieve quick launch and precision strike, a three dimensional autonomous guidance method for lift reentry vehicle's whole flight is studied in this paper. Firstly, a method is proposed for reentry phase, whose drag acceleration profile is obtained by interpolation between upper and lower boundary of entry corridor and two reversals of bank angle. The reentry process constraints and precision can be met by adjusting interpolation factor of the drag acceleration profile and reversal point of the bank angle. Then, the hit phase guidance law is designed in the form of proportional navigation guidance law based on vehicle and target position. The vehicle can strike target exactly with certain precision by updating the guidance coefficient in real time. Lastly, the whole flight guidance method is obtained using smooth transition at the joint point control commands of entry phase and hit phase. Monte Carlo simulation results show that the guidance method can guide the vehicle to strike target exactly with certain precision and meet process constraints, and the hit deviation is less than 10 m, the angle deviation is less than 1.3°.