A new approach for scale invariant features detection
CSTR:
Author:
Affiliation:

(School of Computer Science and Technology, University of South China, 421001 Hengyang, Hunan, China)

Clc Number:

TP751

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    To resolve the problems of high computational complexity, low anti-noise ability and the drifting of pixel position, a scale invariant feature algorithm based on causality is proposed in this paper. Firstly the Gauss smoothing image is built up by Gaussian convolution with the original image. Then, the Harris corners are extracted as candidate features both in the original and the Gauss image. Finally, the stable scale invariant features are acquired by projection from the original image to the Gauss image. The experimental results indicate that this algorithm is concise, fast, efficient with strong anti-noise ability, and provides a basis for subsequent visual processing.

    Reference
    Related
    Cited by
Get Citation
Related Videos

Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:January 15,2015
  • Revised:
  • Adopted:
  • Online: May 09,2016
  • Published:
Article QR Code