Insertion-extraction kinetic of spherical LiMn1.5Ni0.5O4 material
CSTR:
Author:
Affiliation:

(General Research Institute for Nonferrous Metals, Beijing 100088, China)

Clc Number:

TM912.1

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    To figure out kinetic performance of LiMn1.5Ni0.5O4 positive-electrode material, spinel LiMn1.5Ni0.5O4 positive-electrode materials were prepared by a hydrothermal-assisted coprecipitation method. The structure and lithium ion insertion-extraction kinetic of the material were investigated by X-ray diffractometry (XRD), scanning electron microscopy (SEM) and electrochemical impedance spectroscopy (EIS). The results showed that LiMn1.5Ni0.5O4 material powders prepared by coprecipitation method had a spherical morphology, a small particle size and narrow particle size distribution. During cycling of LiNi0.5Mn1.5O4, the transfer resistance increased the diffusion coefficient of lithium-ion decreased, and then the electronic conductivity and ionic conductivity reduced. After the temperature rose, the solution resistance for LiNi0.5Mn1.5O4 material changed a little, but the transfer resistance gradually increased and the diffusion coefficient of lithium-ion gradually decreased. In addition, the dissolution rate of LiNi0.5Mn1.5O4 material was accelerated, and the thickness of solid electrolyte interphase (SEI) layer extended. The insertion-extraction kinetic of LiMn1.5Ni0.5O4 material had a close relationship with temperature and cycle times.

    Reference
    Related
    Cited by
Get Citation
Related Videos

Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:September 08,2015
  • Revised:
  • Adopted:
  • Online: July 11,2016
  • Published:
Article QR Code