Numerical simulation of vertical high-speed water entry process of projectiles with different heads
CSTR:
Author:
Affiliation:

(School of Astronautics, Harbin Institute of Technology,Harbin 150001, China)

Clc Number:

TV131.2

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    The finite volume method, VOF (volume of fluid) multiphase flow model, and dynamic grid technique were introduced in order to conduct the numerical simulation of vertical high-speed water entry process of axisymmetric projectiles with five different heads. The influences of the head types on the cavity shape, the projectile hodrodynamics and trajectory properties were studied. The results show that the head type has significant influences on the cavity shapes, surface closing time of cavities, resistance, depth and speed of water entry process. The radius of the cavity induced by sphere and truncated sphere projectiles is smaller than that of the projectiles with the other three head types. The surface closing time decreases in the order of flat head, sphere head, cone head and truncated cone head. The pressure on the projectiles is pretty high and the distribution of the pressure on the sphere or truncated sphere head is uneven so that high shear stress exists on these heads. The water entry velocity decreases more slowly and the depth increases more quickly as the projectile head has a better streamline. The drag coefficient decreases in the order of flat head, truncated sphere head, truncated cone head, cone head, sphere head.

    Reference
    Related
    Cited by
Get Citation
Related Videos

Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:April 29,2015
  • Revised:
  • Adopted:
  • Online: October 04,2016
  • Published:
Article QR Code