Influence of support on dynamic performance of radial driving shaft for aero engine
CSTR:
Author:
Affiliation:

(1.AVIC Shenyang Engine Design and Research Institute,Shenyang 110015, China; 2.Aviation Key Laboratory of Science and Technology on Power Transmission of Aeroengine(AVIC Shenyang Engine Design and Research Institute),Shenyang 110015,China)

Clc Number:

V233.1

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    To improve the dynamic performance of a radial driving shaft employed on an aero engine,a theoretical analysis based on FEM is conducted. Dynamic model and equation is constructed consistent with the actual structure and practical operating condition. The influences of gyroscopic moment,supporting stiffness and location of the intermediate fulcrum on shaft critical speed are discussed. The method to determine the intermediate supporting location is suggested,which is believed to be valuable in practical design of radial driving shaft. Analysis results indicate that the gyroscopic moment has minimum impact on the natural frequency,less than 0.5%. When the intermediate fulcrum is located at the point of the ‘ Natural Mode' of second curved modal shape with no intermediate fulcrum,the highest critical speed and design margin of supporting stiffness could be achieved. The experimental results prove the correct of the theoretical analysis.

    Reference
    Related
    Cited by
Get Citation
Related Videos

Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:May 08,2015
  • Revised:
  • Adopted:
  • Online: January 13,2017
  • Published:
Article QR Code