Degradation of triclosan by UV/H2O2:Kinetics and reaction mechanism
CSTR:
Author:
Affiliation:

(1.School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090, China; 2.State Key Laboratory of Urban Water Resource and Environment (Harbin Institute of Technology), Harbin 150090, China; 3.Key Laboratory of Green Chemical Engineering and Technology of College of Heilongjiang Province (Harbin University of Science and Technology), Harbin 150040, China; 4.School of Science and Industrial Technology, Harbin Institute of Technology, Harbin 150090, China; 5.School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, China)

Clc Number:

TU991.2

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    The aim of this work is to investigate the transformation efficiency of triclosan (TCS) at the wavelength of 254 nm in the presence of H2O2. The effects of oxidant dosage, TCS concentration, NOM, and pH were evaluated. Most of these kinetic results could be described by a steady-state kinetic model. Increasing dosage of H2O2 increased the observed pseudo-first-order rate constant for TCS degradation (kobs) when H2O2 < 1 mmol/L. However, when H2O2 >1 mmol/L, kobs decreased with H2O2 dosage increased due to the effects of radical scavenging by H2O2. Increasing concentration of TCS decreased the steady-state concentration of HO ·. The presence of NOM significantly decreased kobs due to the effects of UV absorption and radical scavenging. When pH=9, kobs was higher than that when pH=5-7. This could be attributed that the deprotonated TCS was more reactive than protonated TCS. Six products were detected in TCS treated by UV/H2O2. A tentative pathway was proposed, where dechlorination and hydroxylation reaction were involved.

    Reference
    Related
    Cited by
Get Citation
Related Videos

Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:August 03,2016
  • Revised:
  • Adopted:
  • Online: January 16,2017
  • Published:
Article QR Code