Calibrating of acceleration and deceleration rate for the operating speed prediction models of two-lane roads in a mountainous area
CSTR:
Author:
Affiliation:

(1.College of Traffic and Transportation, Chongqing Jiaotong University, Chongqing 400074, China; 2.School of Traffic and Logistics, Southwest Jiaotong University, Chengdu 610031, China; 3.Key Laboratory for Automotive Transportation Safety Enhancement Technology of the Ministry of Communication, Xi’an 710004, China)

Clc Number:

U491

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    To determine the acceleration and deceleration rate for the operating speed prediction model, the continuously driving tests of passenger car, bus, and heavy trucks were carried out on two-lane roads in a mountainous area. Longitudinal acceleration of vehicles was collected, and the cumulative frequency curves of peak acceleration and deceleration rate were analyzed. The statistical distribution and the eigenvalues of acceleration (ax) and deceleration (ab) were obtained, and the models of ax and ab with road geometry parameters as independent variables were established. The results show that: due to that the magnitude of ab of passenger cars is about twice higher than ax, the ax and ab could not be simplified to a same fixed value. Slope breakpoint of cumulative frequency curve of ax and ab does not appears on the 85th percentile but near the 95th percentile. The ax and ab of large buses display very close amplitude, and ab of heavy-duty trucks is significantly greater than ax. ax and ab of heavy-duty trucks are lower than large buses'. There is a negative correlation between longitudinal acceleration of passenger car and curve radius, and a positive correlation with curve deflection angle.

    Reference
    Related
    Cited by
Get Citation
Related Videos

Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:October 20,2015
  • Revised:
  • Adopted:
  • Online: April 13,2017
  • Published:
Article QR Code