Abstract:To study the relationship between spectral energy and vortex motion or turbulence scale, wind pressure distribution characteristics of different rise-span ratio and low height of the saddle roof surface were investigated when the flow was perpendicular to the windward wall through the rigid model wind tunnel pressure tests. Then the study focused on the high point, middle point and low point wind measuring point column respectively, and their wind pressure spectra were discussed. Results show that the maximum wind suction is at the location of the low windward point, and the wind pressure gradient changes greatly. The saddle rise-span ratio is mainly embodied in the rear of two-thirds area of the roof of wind pressure, and the severer wind suction occurs with the greater the curvature. The greater the windward side height is with the higher the wind suction. The wind suction has maximum change near the low point of the windward. In high and middle windward point the wind pressure spectrum is the narrowband distribution and low frequency plays a leading role at the front windward, however, the high frequency band energy of back area is greater than that of the front area. The wind is characterized by wide distribution and the high frequency energy increases gradually as the development of flow downstream.