Investigation of the effect of potassium permanganate on the photocatalytic degradation of hexafluorobisphenol A by peroxymonosulfate
CSTR:
Author:
Affiliation:

(1.School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090, China; 2.State Key Laboratory of Urban Water Resource and Environment (Harbin Institute of Technology), Harbin 150090, China; 3.Key Laboratory of Green Chemical Engineering and Technology of College of Heilongjiang Province (Harbin University of Science and Technology), Harbin 150040, China; 4.School of Science and Industrial Technology, Harbin Institute of Technology, Harbin 150090, China;5.School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250000, China)

Clc Number:

TU991.2

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    The aim of this work is to investigate the effect of potassium permanganate (KMnO4) on the photocatalytic degradation of hexafluorobisphenol A (BPAF) by peroxymonosulfate (PMS). The influences of the experimental conditions such as PMS and permanganate dosage, solution pH were analyzed. Furthermore, the process for the oxidative removal of BPAF in natural water was confirmed and its efficiency compared with that of UV/PMS process. Results showed that KMnO4 had a positive effect on the BPAF degradation in the UV/PMS process. The degradation efficiency was increased with the increase of PMS dosage. With the dosage of KMnO4 increased from 0 to 1.5 μmol/L, the optimum removal efficiency of BPA obtained when PMS was 1 mmol/L. Further addition of KMnO4, however, had no significant promotion on the extent of BPAF oxidation efficiency. BPAF degradation rate inhibited with increasing the pH under acidic condition, while promoted significantly under alkaline condition. The BPAF removal percentage in UV/PMS/KMnO4 was about 12%-14% higher than in UV/PMS system in actual water. The mechanism of the synergetic combination of PMS with KMnO4 for BPA degradation under the UV irradiation indicated that the catalytic oxidation of some reactive manganese intermediates generated in the UV/PMS/Mn(Ⅶ) process.

    Reference
    Related
    Cited by
Get Citation
Related Videos

Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:October 04,2016
  • Revised:
  • Adopted:
  • Online: July 30,2017
  • Published:
Article QR Code