Development of an optimization model for planning carbon dioxide pipeline transportation system and its application
CSTR:
Author:
Affiliation:

(1.Environmental Research Academy, North China Electric Power University, Beijing 102206,China; 2.Research Institute of Shannxi Yanchang Petroleum (Group) Co., Ltd., Xi’an 710075, China)

Clc Number:

U172.4

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Carbon dioxide (CO2) capture, utilization and storage, as an emerging technology that can help reduce coal chemical plant greenhouse gas emission by large scale, have drawn significant attention. Pipeline transportation is an essential part of the technology, but high cost has greatly limited its application. Therefore the main objective is to develop an optimization model for supporting CO2 pipeline transportation system planning to reduce the overall carbon capture utilization and storage (CCUS) system cost by optimizing key technology process of a CO2 transportation system. The developed model was further applied to Shaanxi Yanchang's CCUS project for planning its CO2 transportation system. The results indicated that in case of low demand of CO2 storage, a gas-phase CO2 pipeline transportation system coupled with in-situ compression and injection was recommended. In the case of high demand of CO2 storage, this study would recommend a super-critical / density phase transportation system which could have lower system cost than gas phase pipeline system as the cost for compression at the site of storage can be saved

    Reference
    Related
    Cited by
Get Citation
Related Videos

Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:October 26,2016
  • Revised:
  • Adopted:
  • Online: July 30,2017
  • Published:
Article QR Code