Experimental investigation on seismic behaviors of composite girder with corrugated steel web
CSTR:
Author:
Affiliation:

(1. Department of Bridge Engineering, Tongji University, Shanghai 200092, China; 2. Sichuan Province Transport Department Highway Planning, Survey, Design and Research Institute, Chengdu 610041, China)

Clc Number:

U448.216

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    To investigate the seismic behaviors of partially encased composite girder with corrugated steel web and composite girder with stiffened corrugated steel web, the pseudo static models tests with shear span ratio of 1.67 were conducted. The basic seismic performances including failure features, hysteretic curves, load-carrying capacity, ductility, strength and stiffness degradation, energy dissipation and deformation recovery ability were analyzed. The results indicate that the partially encased specimen presented bending-shear failure with local buckling of the corrugated steel web, while the stiffened one was failed by shearing and overall buckling of the web. In addition, the inclined cracks appeared at the end of fixed part for all tested bodies. Compared with the stiffened girder, the partially encased one exhibited a higher load-carrying capacity, ductility and energy dissipation ability. These two kinds of webs can improve the stability of the corrugated steel web, the hysteretic curves are relatively plump and the strength degradation coefficients are greater than 0.9, the viscous damping coefficients are more than 0.2, and the residual deformation ratios are less than 0.61. All of these data indicate that the proposed webs have the smaller strength degradation, and greater energy dissipation and deformation recovery ability.

    Reference
    Related
    Cited by
Get Citation
Related Videos

Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:May 12,2017
  • Revised:
  • Adopted:
  • Online: June 14,2018
  • Published:
Article QR Code