Abstract:The paper is intended to reveal the basic laws of temperature field, water field and amount of frost heave inside the pavement structure, and to provide the theoretical basis for the prevention and cure of uneven frost heave. The test chamber of uneven frost heave of pavement structure was originally designed. The model tests of external water infiltration and uneven frost heave of pavement structure were conducted. The numerical simulation of the three-stage coupling of hydro-thermal-stress was realized on the basis of the targeted secondary exploitation of ABAQUS. The comparison of numerical simulation results and model test results were discussed from three aspects, i.e. temperature field, water field and amount of frost heave. The results showed that: the model test intuitively simulated the phenomenon of faulting of slab ends between runway and the shoulder. It illustrated that the cause of faulting of slab ends is the uneven frost heave of the runway and the shoulder. The basic development laws of uneven frost heave of pavement structure were revealed objectively. The external water infiltration has a great impact on water field redistribution. Uneven frost heave of pavement structure is the result of the coupling of temperature field and water field inside pavement structure. The cooling rate and temperature gradient impact on the water migration and accumulation, and in turn, the water field redistribution affects the delivery of temperature. The numerical simulation results were in good agreement with the model test results, both of which were consistent with the actual. The correctness and applicability of the numerical model were verified. The combination of the objective advantages of model test and the comprehensive advantage of numerical simulation contributes to in-depth research on the uneven frost heave of other structures in cold region.