Influence of controllable parameters on the performance of water-surface bionic vector propeller
CSTR:
Author:
Affiliation:

(1.Vehicle and Electrical Engineering Department,Army Engineering University, Shijiazhuang 050003, China; 2. High Speed Aerodynamic Institute,China Aerodynamics Research and Development Center,Mianyang 621000,Sichuan,China)

Clc Number:

U664.3; Q811.6

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    To solve the problem that the propulsion mechanism of amphibious platform is complicated and the navigation velocity is low, the first step was to study the bionic mechanism of the vector propeller and design a new type of water platform and amphibious platform based on the kinematics of basilisk lizard's feet. The bionic effects that the propeller rotates in air cavity and the platform sails in hydroplaning state with pitch10.6° angle were realized. Then, the dynamic mechanics model of water-surface platform's hydroplaning sailing was analyzed with the ЦАГИ theory, and the model of flow fluid of plan rotation was set up. Based on the analysis of the force characteristics of one blade and output of the propeller, the optimum axle height of the output and the comprehensive influence of navigation velocity and rotation velocity on driving output were obtained, and numerical calculation was validated by the test system. The results indicate that periodic output of the propeller can be deduced from the three-dimensional driving output of one blade. As the axle height rose from the water surface, the amplitudes of the lift and moment firstly increased and then decreased. The thrust decreased monotonically and the maximum values of three-dimensional driving output corresponded to different axle heights. As a whole, the thrust and the moment decreased with the increase of navigation velocity and increased with the increase of rotation velocity, and the changing trend of the lifting force was different.

    Reference
    Related
    Cited by
Get Citation
Related Videos

Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:September 28,2017
  • Revised:
  • Adopted:
  • Online: November 12,2018
  • Published:
Article QR Code