Abstract:The open-circuit voltage of a solar cell is one of the key parameters for conversion efficiency. In order to contactlessly and quantitatively image the open-circuit voltage of solar cells, in this paper, the relationship between the luminescence intensity and the open-circuit voltage (Voc) of solar cells was firstly simulated by finite element technique (FEM). Secondly, the Voc images of a crystalline silicon (c-Si) solar cell and a multicrystalline silicon (mc-Si) solar cell were quantitatively investigated by lock-in carrierography (LIC) as well as the existed photoluminescence (PL) method. In order to validate the imaging method, Sun-Voc was employed to measure the open-circuit voltage of the crystalline silicon (c-Si) solar cell and the multicrystalline silicon (mc-Si) solar cell. Finally, the open voltage images of GaAs solar cells irradiated by 1 MeV electrons with different fluences were studied by LIC. The result shows: the averaged Voc values by both imaging methods were in good agreements with the results measured by Sun-Voc, and the average values of LIT and PL for two kinds of solar cells differed less than 1% compared with Sun-Voc. Furthermore, the Voc image by LIC was consistent with PL. Compared to PL measurements, LIC has a higher signal-to-noise-ratio (SNR) as well as a simpler detection process. The Voc degradation of electron irradiation GaAs solar cells measured by LIC was in a good agreement with electrical measurement.Therefore, LIC could provide a possible approach to achieve more quantitative characterization of spatially resolved information and a new method to investigate the irradiated solar cell for space use.