Seismic performance of self-centering concrete shear wall: State-of-the-art review and prospects
CSTR:
Author:
Affiliation:

(1.School of Civil Engineering, Harbin Institute of Technology, Harbin 150090, China;2.Key Lab of Structures Dynamic Behavior and Control (Harbin Institute of Technology), Ministry of Education, Harbin 150090, China;3.Key Lab of Smart Prevention and Mitigation of Civil Engineering Disasters (Harbin Institute of Technology), Ministry of Industry and Information Technology, Harbin 150090, China)

Clc Number:

TU378

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Post-earthquake resilience of engineering structures is an important research area of sustainable earthquake engineering in recent years. Restoration and collapse control are realized with the constraint at the base released and the wall panels post-tensioned by unbonded prestressing tendons, which can reduce damage level and even eliminate residual drift owing to the gap-opening mechanism. As an important component of earthquake resilient structural system, self-centering concrete shear wall system is developing continuously. Self-centering shear wall such as controlled rocking wall, hybrid rocking wall, coupled wall with vertical joint, and coupled wall with coupling beam can accomplish restoration, but various dissipating devices result in significantly different levels of energy dissipating. Traditional force-based design is not applicable, so displacement-based performance design should be presented with the improvement of residual drift control, definition of performance level, and section limit state. Fiber model, lumped plasticity model, multi-spring model, and finite element model can accurately simulate the behavior of self-centering shear wall, but there are some differences in parameter sensitivity.Thus, some current research challenges and prospects were presented to provide theoretical and technical support for the development and application of self-centering shear wall structure system: the elastic and inelastic behavior of prestressing tendon which can cause prestress loss and insufficient deformation capacity during rocking, the connection performance between self-centering shear wall and adjacent structural components such as the floor system and its influence on self-centering ability, collapse control with the failure of post-tensioning tendon and dissipating device, and utilization of multiple dissipating rocking interfaces between wall panels to mitigate higher mode effects and estimation of residual drift.

    Reference
    Related
    Cited by
Get Citation
Related Videos

Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:July 30,2018
  • Revised:
  • Adopted:
  • Online: November 28,2018
  • Published:
Article QR Code