Grinding characteristics of laser cladding Cr3C2/Ni based composite coating
CSTR:
Author:
Affiliation:

(College of Mechanical Engineering and Automation, Huaqiao University, Xiamen 361021, Fujian,China)

Clc Number:

TG58

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    To study the effects of different grinding parameters, different mass fraction and sizes of Cr3C2 on ground surface quality of the laser cladding Cr3C2/Ni based composite coating, as well as to explore the grinding characteristics and the generation mechanism of the ground surface defects, the grinding experiment was conducted by using CBN grinding wheel, and the results show that the defects on the ground surface of laser cladding Cr3C2/Ni based composite coating mainly include two categories: one is generated in the Ni based alloy which includes debris adherence, grinding traces, micro-crack and cracks; the other is the broken Cr3C2 particles and voids generated by the pullout of the broken Cr3C2. The debris adherence in the Ni based alloy is easier to form under the condition of smaller depth of cut and lower Cr3C2 mass fraction in the coating. As the cutting depth increases, deeper grinding marks and micro-crack appear. The cracks form in the Ni based alloy when the mass fraction of Cr3C2 in the coating is higher than 20%. More voids are found on the ground surface when the mass fraction of Cr3C2 is 30%. Under the same grinding parameters, the Ra value of ground coating increases with the increase of the size of Cr3C2 particles and decreases with the increase of mass fraction of Cr3C2. However, the Ra value increases slightly when the mass fraction of Cr3C2 exceeds 20%. The experimental results reveal that there are fewer defects on the ground surface when the size of Cr3C2 is smaller and the wheel speed is higher.

    Reference
    Related
    Cited by
Get Citation
Related Videos

Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:December 09,2017
  • Revised:
  • Adopted:
  • Online: December 27,2018
  • Published:
Article QR Code