Amulti-label learning model based on label correlation and imbalance
CSTR:
Author:
Affiliation:

(1.School of Software Engineering, South China University of Technology, Guangzhou 510006, China; 2. School of Computer Science & Engineering, South China University of Technology, Guangzhou 510006, China)

Clc Number:

TP181

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Since the existing multi-label learning algorithms pay less attention to the problem of correlation and imbalance between label sets, this paper proposes a multi-label learning model based on label correlation and imbalance (MLCI). By coupling other label categories to consider the correlation among labels and reducing the imbalance ratio between labels of instances, the learning model is for each label category, and it is an ensemble classifier that combines the current class of binary imbalance classifier with multiple imbalanced classifiers coupled to other labels. In this paper, seven commonly used multi-label algorithms are used as comparison algorithms to classify the four open datasets of yeast, scene, emotions and CAL500. The experimental results show that the MLCI has obvious advantages in accuracy precision, ranking-Loss, macro-averaging AUC and micro-averaging AUC.

    Reference
    Related
    Cited by
Get Citation
Related Videos

Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:November 01,2018
  • Revised:
  • Adopted:
  • Online: December 27,2018
  • Published:
Article QR Code