Abstract:To investigate the axial compressive performance of alkali-activated slag ceramsite concrete hollow block (AASCHB) masonry, a total of 36 masonry specimens of the AASCHB at MU7.5, MU10, and MU15 as well as alkali-activated slag mortar with pottery sand (AASM) at Mb20, Mb25, and Mb30 were tested. Results show that the axial compressive strength of the AASCHB masonry increased with that of AASCHB, while the axial compressive strength of the AASM had a complicated impact on that of the masonry.Based on the formula provided in Code for Design of Masonry Structures(GB 50003—2011), the estimated values of the axial compressive strength of the masonry using AASCHB and AASM are generally higher than the experimental results.By introducing the characteristic coefficient of AASM and adjusting the correction coefficient of the axial compressive strength for mortar, a formula for the axial compressive strength of the new type of block masonry with the key parameters of the compressive strength of AASCHB and AASM was proposed, which is in accordance with the codified formula of the masonry axial compressive strength adopted in Code for Design of Masonry Structures.