Numerical simulation and experimental study on mechanical properties of a nonlinear eddy-current inertial mass damper
CSTR:
Author:
Affiliation:

(1.International Joint Research Lab for Eco-building Materials and Engineering of Henan Province (North China University of Water Resources and Electric Power), Zhengzhou 450045, China;2.Key Lab of Concrete and Prestressed Concrete Structure (Southeast University), Ministry of Education, Nanjing 210096, China;3.Key Lab for Wind and Bridge Engineering of Hunan Province (Hunan University), Changsha 410082, China)

Clc Number:

TU352.1

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    To improve the energy dissipation efficiency of a planar eddy current damper (ECD), a nonlinear eddy-current inertial mass damper (NEMD) combining the rotary eddy-current damping with two-node inertial mass element based on ball screw mechanism is proposed in this paper. Overall conformations and working principles of the NEMD were well demonstrated. Through semi-theoretical and semi-numerical analysis, three-dimensional finite-element simulation analysis as well as mechanical performance test, axial force characteristics, and calculation method for rotary eddy-current damping of the NEMD were then obtained. A two-stage design method of the NEMD based on the semi-theoretical and semi-numerical analysis and three-dimensional electromagnetic finite-element simulation analysis was established. Results show that the double amplification of the inertial mass and the equivalent eddy-current damping coefficient of the NEMD was realized, which significantly improved the energy dissipation efficiency of the ECD. As the axial velocity of the NEMD increased, corresponding eddy-current damping force increased at the beginning, and then the eddy-current damping force began to decrease nonlinearly when the force reached a maximum. The computational accuracies of the semi-theoretical, semi-numerical analysis, and three-dimensional electromagnetic finite-element simulation analysis on the eddy-current damping could basically meet the design requirements of the NEMD.

    Reference
    Related
    Cited by
Get Citation
Related Videos

Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:August 14,2018
  • Revised:
  • Adopted:
  • Online: May 28,2019
  • Published:
Article QR Code