Abstract:The increase of tall building density in large cities can potentially increase the risk of building facade damage caused by wind debris during strong winds, which has induced a major concern about cascading damage in design community. Cascading damage is a significant large area damage of cladding elements caused by small and localized facade crashes due to the increase of internal pressures. To assess the potential cascading damage, a probabilistic risk analysis method was proposed. By conducting the synchronous pressure integration and the best linear unbiased estimation (BLUE), the cladding wind pressures for undamaged configuration and various damaged configurations were calculated. The relationship between cladding wind pressures and probability of occurrence was established by using upcrossing analysis. The cladding design wind pressures were determined for a given facade accident probability. To demonstrate the method, a case study of a typical tall building was presented to determine the cladding design wind pressures by taking into account the probability of cascading damage. Results indicate that positive wind pressures in corner area were the most sensitive to local damages around building corners, followed by negative wind pressures in the corner area. The proposed method can be used to assess the impact of accidental facade damage on the cladding design wind loads, and is beneficial to identify the cladding area that is overly sensitive to accidental facade damage.