Abstract:To solve the problem of low folding rate and accuracy of the main reflective surface of paraboloid solid surface antenna, according to the motion form of antenna panel, a kind of deployable mechanism of solid surface antenna is designed. The Lagrange dynamic model is established by position vector equation, vector closed projection method and D-H coordinate transformation matrix, and the driving force of the mechanism is solved. The influence of kinematic parameters on the driving force and the antenna’s fundamental frequency and formation in the closed and deployed state are analyzed, and the response surface method is used to analyze the influence of the structural parameters on the fundamental frequency and the sensitivity. The principle prototype is developed, and the deployment function and modal test are carried out. The results show that the driving force in the process of turn is much larger than that of the deployment process, and it can be reduced by reducing input speed, adjusting the position of the spherical hinge and reducing the initial angle. The fundamental frequency of the antenna meets the design requirement, the influence of the support rod size parameters on the fundamental frequency is greater than that of switching link, the size parameter of switching link can be adjusted to increase appropriately the fundamental frequency. The deployable mechanism can realize the antenna's deployment repeatedly, and the measurement results of fundamental frequency are close to the analysis results, the antenna can realize deployment function and has good dynamic performance.