Abstract:In order to improve the efficiency and safety in high speed obstacle avoidance under emergency of vehicle with mechanical elastic wheel (MEW), a nonlinear eight-degree of freedom (8-DOF) vehicle model for dynamics simulation was built up by Simulink. The parameters of MEW tire model were identified by Matlab genetic algorithm toolbox according to the experimental data of flat-bed test rig. Considering the driving speed, the trajectory deviation, the steering wheel angle and the rollover evaluation index, an 8-DOF driver-vehicle closed loop system was established. The driving speed and steering properties of driver-vehicle model to rollover stability are analyzed. For high speed path tracking and rollover control under emergency obstacle avoidance of vehicle, the speed control driver model is established based on steering control driver model, which utilizes a predictive load transfer ratio (PLTR) as the rollover index and the rollover controller activates only when the potential for rollover is significant, otherwise, acceleration control strategy will be used for minimum time obstacle avoidance when the longitudinal velocity is less than the expected safety velocity. Simulation results show that the proposed control strategy has good accuracy in both path and speed following and has a better stability of rollover under emergency situation.