Photocatalytic degradation of DMP using 3-D stacked N-TiO2/Ti mesh under visible light
CSTR:
Author:
Affiliation:

(1.College of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai 264209, Shandong, China; 2.State Key Laboratory of Urban Water Resource and Environment (Harbin Institute of Technology), Harbin 150090, China)

Clc Number:

O643.36; TB383.1

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    To achieve effective removal of Dimethyl phthalate (DMP) under visible light LED (Vis-LED), N-TiO2/Ti network catalyst was prepared on the surface of titanium mesh by one-step anodic oxidation of adding urea to electrolyte solution, and the DMP was degraded by multiple layers of N-TiO2/Ti mesh superposed in a reactor. The N-TiO2/Ti mesh was characterized by field emission scanning electron microscopy (FESEM), energy dispersive X-ray spectroscopy (EDX), X-ray diffraction spectroscopy (XRD), X-ray photoelectron spectroscopy (XPS), and UV-visible diffuse reflectance spectroscopy (UV-vis DRS). Results show that N element mainly participated in the form of substituted nitrogen, and both surface morphology and crystal structure of the TiO2 nanotubes were not changed. The forbidden band width of the N-TiO2/Ti mesh calculated by the Tauc/David-Mott formula was about 2.76 eV, and the absorption band edge was extended to 449 nm, where the visible light absorption performance was significantly enhanced. After the N-TiO2/Ti foil was equivalently stretched into 3 layers of N-TiO2/Ti mesh, the degradation rate of DMP increased by 7.5%. When 5 layers of N-TiO2/Ti mesh were superposed, the degradation rate of DMP tended to be stable and it increased by 25.7% compared with that of Ni-TiO2/Ti plate. Partial acidity or alkaline was beneficial to the degradation of DMP. The addition of H2O2 could promote the degradation of DMP, but H2O2 could not effectively degrade DMP under single use and visible light irradiation.

    Reference
    Related
    Cited by
Get Citation
Related Videos

Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:August 16,2018
  • Revised:
  • Adopted:
  • Online: October 17,2019
  • Published:
Article QR Code