Abstract:To make the numerical control machine precision design have quantitative theoretical values for reference, the kinematic accuracy mapping model of NC machine tools based on the meta-action unit is established from the perspective of motion. The functional decomposition method of "Function-Motion-Action, FMA" is used to obtain the meta-action unit, and the topology of the NC machine tool is described in combination with the multi-body system theory. Using the theory of spin quantity the error of NC machine tools is modeled, the spatial kinematic error model of NC machine tools is established, and the comprehensive value of spatial kinematic error by spiral theory is obtained. Based on the manufacturing cost, spatial kinematic error pitch and its size, the kinematic accuracy mapping model is constructed, and the NSGA-II genetic algorithm is used to map the kinematic precision of NC machine tools. Finally, the kinematic accuracy mapping of a domestic machining center is solved, and the feasibility and effectiveness of the model are illustrated.