UAV autonomous obstacle avoidance path planning under multiple threats
CSTR:
Author:
Affiliation:

(1.Equipment Management and Unmanned Aerial Vehicle Engineering College, Air Force Engineering University, Xi’an 710051, China; 2.Graduate College, Air Force Engineering University, Xi’an 710051, China; 3.China Satellite Maritime TT&C Department, Jiangyin 214431, Jiangsu, China)

Clc Number:

V279

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    As an emerging unmanned combat force and indispensable civilian equipment, unmanned aerial vehicles (UAVs) have gradually been integrated into all aspects of national security and social development. Path planning is the core link to ensure that UAVs successfully complete the established task. In order to solve the problem of real-time path planning with many static and dynamic threats in the planning space, a method of autonomous obstacle avoidance path planning with receding horizon is proposed. Firstly, the path planning model was constructed as a single objective function optimization problem. According to the simplified kinematic model and constraints of the UAV, the receding horizon optimization strategy was used to generate the optimal path sequence. Then, the receding horizon optimization strategy was also used to generate sub-sequences for the trajectories between the optimal path sequences. Considering the threat and flight constraints, the negative gradient descent method was used to search the waypoint, and the genetic algorithm was used to plan the sub-sequences. Finally, the approximate global optimal path was obtained by repeated receding iterative optimization, and the trajectory was processed by bezier curve to represent the actual flight path. The experimental simulation results show that the model is reasonable and the method is effective. Meanwhile, it also has good threat avoidance ability and can plan a smooth path. Compared with the global planning method, the proposed method reduces the convergence time, has stronger real-time performance, and can converge to the approximate global optimal solution quickly and robustly.

    Reference
    Related
    Cited by
Get Citation
Related Videos

Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:December 06,2018
  • Revised:
  • Adopted:
  • Online: April 12,2020
  • Published:
Article QR Code