Numerical simulation of enhanced reforming of glycerol in a membrane-assisted fluidized bed
CSTR:
Author:
Affiliation:

(1.Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China; 2. School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001,China; 3. Beijing Aerospace Propulsion Institute, Beijing 100076, China)

Clc Number:

TK91

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    To achieve the development of glycerol as biodiesel byproduct in the industry of hydrogen production, the glycerol reforming process for hydrogen production in a membrane-assisted fluidized bed reactor is numerically simulated on the basis of the two-fluid model and the kinetic theory of granular flow coupled with the glycerol reforming kinetic model, where the CO2 sorption kinetic model and hydrogen separation model are implemented. The gas component and particle concentrations as well as temperature are predicted, and the multiphase flow behaviors and reaction characteristics during the reforming process are evaluated. The mutual interaction mechanism of the two enhancing methods including membrane hydrogen separation and carbon dioxide sorption is discussed, and the impact of operating parameters on reforming performance is examined. The result reveals that the concentration polarization resistance will be restricted with the rising hydrogen permeation. At the sorbent to catalyst ratio of 1∶1, the relative hydrogen yield is improved by 5% compared to the reforming process without sorbents. When the membrane thickness is reduced from 300 μm to 30 μm, the CO2 sorption rate can be increased by 1.4%. The utilization of catalyst-sorbent bi-functional particles can enhance CO2 sorption and hydrogen separation. The hydrogen permeation is improved by almost 20%.

    Reference
    Related
    Cited by
Get Citation
Related Videos

Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:October 14,2019
  • Revised:
  • Adopted:
  • Online: June 22,2020
  • Published:
Article QR Code