Abstract:Considering the CFRP Flat-Joggle-Flat (FJF) adhesively bonded joint, the Bonded Beam element (BBe) of the curved segment was constructed, a semi-analytical model for adhesive stress analysis of such joint was proposed, and the stress results were compared with those of the 3D Finite Element Model (FEM). Meanwhile, the adhesive width and thickness were considered to study their effects on the adhesive stress. The results show that the distributions of adhesive peel stress and shear stress in semi-analytical model are basically in consistent with those in 3D FEM. The adhesive peel stress and shear stress at the end of overlap zone calculated in semi-analytical model has an absolute error value of 5.4% and 3.7% respectively compared with the corresponding stress calculated in 3D FEM. With the same adhesive width, both the adhesive peel stress and shear stress at the end of overlap zone appear to be smaller as the adhesive thickness increases. With the same adhesive thickness, both the adhesive peel stress and shear stress at the end of overlap zone appear to descend as the adhesive width increases. Moreover, both the adhesive peel stress and shear stress at the fillet of overlap zone descend with the increasing of adhesive width for the same adhesive thickness, while rising as the adhesive thickness increases for the same adhesive width. This model can offer some references for the mechanical analysis and design of the CFRP FJF adhesively bonded joints.