Lightweight design and multi-objective optimization of steel assembled wheel
CSTR:
Author:
Affiliation:

(1. School of Mechanical and Aerospace Engineering, Jilin University, Changchun 130025, China;2. State Key Laboratory of Automotive Simulation and Control , Jilin University, Changchun 130025, China; 3. Jilin Lixin Auto Parts Co. LTD, Changchun 130012, China)

Clc Number:

U463.34

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    A kind of dissimilar steel assembled wheel with B500CL as inner rim and Q345B as outer rim material is designed, and a multi-variable cyclic load fatigue endurance test method is used to predict the fatigue life of the wheel. Based on finite element method, the strength and stiffness of the wheel under different loads and the fatigue life and safety factor under different stress frequencies are calculated, and the key parts of local large stress are analyzed. A parameterized model is established in the turning condition, and 8 structural design variables are defined. The initial sample points are selected by using the optimal Latin hyper-square experimental design method and the Kriging approximate model of wheels is fitted. Taking the minimum mass, fatigue life and the maximum fatigue life safety coefficient of the wheel as the objective, and taking the stress and the maximum shape variables as the constraints, the multi-objective optimization of the wheel was carried out, and the bending fatigue test was conducted for verification. The results show that the dissimilar steel assembled wheels have good performance and meet the design life requirement after optimization. Compared with the wheel before optimization, the quality of dissimilar steel assembled wheels is reduced by 9.73%.

    Reference
    Related
    Cited by
Get Citation
Related Videos

Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:September 27,2019
  • Revised:
  • Adopted:
  • Online: June 22,2020
  • Published:
Article QR Code