Application of imitation bamboo design in high-rise thin-walled desulfurization tower structures
CSTR:
Author:
Affiliation:

(1.School of Civil and Resource Engineering, University of Science and Technology Beijing, Beijing 100083, China; 2.Beijing International Cooperation Base for Science and Technology-Aseismic Research of the Rail Transit Engineering in the Strong Motion Area, Beijing 100083, China; 3.Beijing Guodian Longyuan Environmental Protection Engineering Co. Ltd., Beijing 100039, China)

Clc Number:

TU317

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    To improve the stability of steel desulfurization tower, the anti-collapse mechanism of bamboo structure was clarified considering the relationship between structural characteristics and mechanical behavior, and it was applied to the imitation bamboo design of steel desulfurization tower structures. The seismic performance of bamboo-like desulfurization tower was analyzed by scale model shaking table tests. Based on the principle of stiffness gradual change, a design method of sectional variable wall thickness for desulfurization tower was proposed to ensure that the changing trend of section stiffness of bamboo-like desulfurization tower was consistent with that of the bamboo body. Stiffener setting was discussed through the eigenvalue buckling method. Stiffener could improve the buckling mode of the structure distinctly, and it is reasonable to set the stiffener spacing of 4 m as the base number. Test results show that the maximum displacement and stress of the structure did not exceed the allowable value under the action of 7 or 8-degree earthquake. The structure was in an elastic state without damage. Under the action of 9-degree earthquake, the maximum stress of the tower exceeded the material allowable stress at working temperature, and local mild bending occurred on the tower, but the structure still did not collapse.

    Reference
    Related
    Cited by
Get Citation
Related Videos

Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:August 15,2019
  • Revised:
  • Adopted:
  • Online: July 21,2020
  • Published:
Article QR Code