Fault diagnosis method for large motor based on sound-vibration signal combined with 1D-CNN
CSTR:
Author:
Affiliation:

(1. School of Electrical and Electronic Engineering, North China Electric Power University, Baoding 071003,Hebei, China; 2. School of Control and Computer Engineering, North China Electric Power University, Baoding 071003, Hebei, China)

Clc Number:

TM32

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    To deal with the problems of low accuracy and poor generalization ability of high-power motor fault diagnosis in complex operation environment, a fault diagnosis method based on sound-vibration signal combined with one-dimensional convolutional neural network (1D-CNN) was proposed. First, a collected sound signal was denoised by the combination of background noise database and sparse representation. Next, the sound signal was filtered by band-pass filter (7-20 kHz), and low frequency vibration signal (within 7 kHz) was superimposed to form more complete motor state representation information in frequency band. Then, the information after filtering and purification was expanded by overlapping data to obtain a large amount of data required for 1D-CNN training. Finally, data samples were input into 1D-CNN for learning and training. Local response normalization (LRN) and kernel function decorrelation were used to improve the structure of 1D-CNN model, which reduced the impact of positive and negative half-cycle fluctuations of pumping unit on motor diagnostic accuracy. Diagnostic results show that the overall diagnostic accuracy of CNN fault diagnosis reached 97.75% based on combined sound and vibration signal analysis, and the generalization ability was good. Compared with traditional motor fault diagnosis methods, the proposed method had obvious advantages.

    Reference
    Related
    Cited by
Get Citation
Related Videos

Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:January 28,2019
  • Revised:
  • Adopted:
  • Online: August 11,2020
  • Published:
Article QR Code