Arterial coordinated signal control method under connected vehicle environment
CSTR:
Author:
Affiliation:

(School of Transportation Science and Engineering, Harbin Institute of Technology, Harbin 150090, China)

Clc Number:

U491

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    In view of the low efficiency of green time utilization in the traditional arterial coordinated signal control method which only conducts speed guidance under connected vehicle environment, based on the two-way information interaction between vehicles and infrastructures, a new arterial coordinated signal control method was proposed with the goal of forming a saturated traffic flow by considering the two-way optimization of speed guidance and signal control scheme. On this basis, the arrival time range of the vehicles to be processed at each intersection in each cycle was defined, and the delay and stops of the vehicles were weighted to form a comprehensive performance evaluation index (PI). The optimization model of signal control parameters was established based on the minimum average PI, and the solution algorithm was designed. Case study shows that compared with the traditional arterial coordinated signal control method that only conducts speed guidance, the proposed method reduced the average PI of vehicles at intersections by 11.2%, which verifies the validity and feasibility of the model. The sensitivity of the optimization model was analyzed from the aspects of speed guidance interval, average travel speed, and intersection spacing, and the applicable conditions of the model were determined. Results show that these factors had significant influence on the optimization results of the signal control method.

    Reference
    Related
    Cited by
Get Citation
Related Videos

Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:January 13,2020
  • Revised:
  • Adopted:
  • Online: March 12,2021
  • Published:
Article QR Code