Traffic organization method for super-long tunnels adjacent to interchanges
CSTR:
Author:
Affiliation:

(1.Key Laboratory of Road and Traffic Engineering of Ministry of Education (Tongji University), Shanghai 201804, China; 2. Key Laboratory of Road Traffic Safety of the Ministry of Public Security (Traffic Management Research Institute of the Ministry of Public Security), Wuxi 214151, Jiangsu, China; 3. School of Civil Engineering, Suzhou University of Science and Technology, Suzhou 215011, Jiangsu, China)

Clc Number:

U491

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    To meet the objective demands of changing lanes in super-long tunnels adjacent to interchanges, and to solve the problems of lane control and length control in traffic organization, through the analysis of the critical safety status of anti-sideslip and anti-overturning, a model was established based on the minimum headway to calculate the minimum safe distance for lane changes in super-long tunnels or connection sections. Aiming at the requirement of double lane changes for three-lane one-way tunnels and above, in order to ensure a safe distance between front and rear vehicles for lane changes, a probability model was constructed for single and double lane changes to measure the success probability of safe lane changes in connection sections. Aided by the Vissim simulation technology, the analogy analysis of traffic organization methods and lane control methods of super-long tunnels was carried out. Considering the operating safety and traffic efficiency of super-long tunnels, the traffic organization methods could be selected based on the indicators of vehicle delay, lost time, average speed, and the number of lane changes, and the lane control methods could be selected based on the average delay per vehicle, the number of parking times per vehicle, vehicle density, delay ratio, and driving speed. Results show that the minimum distance of connection sections of super-long tunnels adjacent to interchanges should be checked for the minimum distance of safe lane changes, and the success probability of single and double lane changes should be measured based on the safe distance. For the connection sections which cannot meet the length requirements, the traffic organization method that the off-ramp vehicles complete the lane changes in the super-long tunnels is suggested.

    Reference
    Related
    Cited by
Get Citation
Related Videos

Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:May 21,2020
  • Revised:
  • Adopted:
  • Online: March 12,2021
  • Published:
Article QR Code