Effect of different stirring methods on rejuvenation and operation of anaerobic ammonium oxidation sludge
CSTR:
Author:
Affiliation:

(1.Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering (Beijing University of Technology), Beijing 100124, China; 2.State Key Laboratory of Urban Water Resource and Environment (Harbin Institute of Technology), Harbin 150090, China)

Clc Number:

X703.1

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    In this experiment, the effects of different stirring methods on the rejuvenation and operation of anaerobic ammonium oxidation sludge under normal temperature (21±1) ℃ conditions were investigated. Three groups of reactors (R1, R2, and R3) were studied, and the stirring methods were continuous stirring for R1 and intermittent stirring with different rotation speeds for R2 and R3. The denitrification performance and the performance of granular sludge during system rejuvenation and operation process were analyzed. Results show that the removal rates of ammonia nitrogen and nitrite nitrogen of R1, R2, and R3 were close to 100% in 0,2 and 2 d, respectively. The anaerobic ammonium oxidation rates of R2 and R3 were higher, which were more suitable for the growth of anammox bacteria. According to the results of cycle test, the fluidization state of the water flow formed by the intermittent stirring method was weak, so that the reactor had lower dissolved oxygen for a longer period, and it was easier to inhibit the activity of AOB, thereby increasing the activity of the anammox bacteria. The R1 system provided strong shearing force and had continuous contact with the substrate solution, resulting in more EPS. At the end of the static operation phase, the average particle size of granular sludge in R1, R2, and R3 was 3,5 and 649 μm, respectively.

    Reference
    Related
    Cited by
Get Citation
Related Videos

Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:August 12,2019
  • Revised:
  • Adopted:
  • Online: March 16,2021
  • Published:
Article QR Code