Abstract:The frost heaving and thawing characteristics of dispersive clay in seasonal frozen soil region of China were studied by freezing-thawing test with different initial moisture contents, dry densities, and multiple freezing-thawing cycles. Results show that the freezing-thawing characteristics of dispersive clay were significantly different from those of non-dispersive clay, and the frost heaving amount of dispersive clay was much larger than that of non-dispersive clay. After several cycles of freezing-thawing, the dispersive clay exhibited loose property after frost heaving, while the non-dispersive clay showed compaction property. The initial moisture content, dry density, and freezing-thawing times had great influence on the thawing settlement coefficient and frost heave rate. The larger the initial moisture content was, the larger the frost heaving amount and the thawing settlement were. After multiple freezing-thawing cycles, the internal moisture content of the dispersive clay was re-distributed, and the lower the initial moisture content was, the higher the percentage increase of moisture content was in the corresponding part. In the case of external water replenishment, the dispersive clay with higher initial moisture content exhibited strong frost heaving after more than two times of freezing-thawing. For dispersive clay with different dry densities, the thawing settlement coefficient increased with increasing numbers of freezing-thawing cycles, and then tended to be stable. The experiment results will provide guidance for the necessary measures to reduce freezing-thawing damages of dispersive clay in the construction of highways, railways, and water conservancy projects in the northern line of “Belt and Road” in Heilongjiang and Jilin provinces.