Abstract:Static crushing technology is a method that the mixed static crushing agent is filled in the hole of rock or concrete and the pressure generated by the static crushing agent is utilized to make the rock or concrete loose and crisp “quietly”. For the development and application of the static crushing technology, this paper introduces the main expansion performance and test methods of static crushing agent, investigates the influence of hole diameter, hole spacing, hole row spacing, hole margin, and hole depth on crushing effect, and reviews the application of static crushing technology in building demolition and concrete and rock crushing. Results show that lime-based static crushing agent composed of calcium oxide, cement, gypsum, and water reducer is the most widely used in engineering. The volume expansion of the static crushing agent mainly originates from the increase of solid volume and pore volume in the reaction process. The expansion pressure increases with the increase of calcium oxide content. Static crushing occurs preferentially at the minimum distance between the hole edge and the free surface. The crushing effect can be improved with increasing hole diameter, hole depth, static crushing agent, and expansion pressure, while too much static crushing agent makes it easier to be ejected from the hole. Within a certain range, the stress generated by the crushing agent at a point near the hole is inversely proportional to the square of the distance from the point to the hole edge, so better crushing effect can be obtained by appropriately reducing the distance of the hole.