Abstract:Translucent photovoltaic skylights have unique synergistic characteristics of shading and power generation, which have been widely used in public skylights of tall buildings. Its variable shading and light transmission characteristics aggravate the complexity of natural lighting mechanism when applied to skylights in tall and large public buildings. This paper aims to improve the natural lighting problem in the tall and large space of railway passenger station waiting halls, and reveal the influence mechanism of the key design parameters of translucent photovoltaic skylights on the natural lighting. In this paper, Beijing is selected as the representative area in northern China, where solar radiation level is moderate, and natural lighting shading and heat gain need to be taken into account. Based on extensive investigation, the typical translucent film photovoltaic skylight of high space waiting hall of typical railway station was selected as the research object, and the DAYSIM tool was used to complete the dynamic simulation and analysis of indoor light environment throughout the year. The study verified the decisive effect of roof area ratio of photovoltaic skylights on the quality of the indoor light environment. Results show that the critical values of roof area ratios of centralized skylights and “one column and many rows” distributed skylights were 40% and 15% respectively. A suitable minimum area ratio of skylights was recommended for the centralized application of photovoltaic modules with different visible light transmittances. Comprehensive design suggestions for the “one column and many rows” distributed skylights were provided, including the number of longitudinal skylights and the vertical and horizontal dimensions. Based on this, the natural lighting optimization design strategies for translucent photovoltaic skylights were proposed for the two typical distribution modes respectively.