Abstract:To meet the requirements of large deployment ratio and high precision for deployable membrane mechanism in space missions, a deployable membrane mechanism based on Miura elastic creases was proposed and subjected to model, analyze and develop prototype. According to the crease distribution law and geometric relations, Miura-ori geometric model was established to investigate the influence law of the crease parameters on the deployment ratio and creases total length, and to calculate and optimize the crease parameters. In ABAQUS/Explicit, the numerical simulation models of the four-creases basic unit with θ= 90° and θ<90° were established respectively to analyze the mechanical behavior of the key membrane creases, and the feasibility of two-dimensional elastic crease was preliminarily proved. The elastoplasticity of the triangular membrane of Miura-ori was further studied, and the change curve of stress with folding process at the intersection of creases was plotted and the peak stress of which was within the range of material elasticity. And the space deployable membrane mechanism prototype was developed to conduct validation and analysis. The results show that the mechanism configuration design scheme is reasonable and a membrane folding scheme based on Miura-ori with large deployment ratio and small creases total length could be obtained by optimizing the crease parameters, and the high surface flatness of the deployed membrane proves the feasibility and superiority of Miura elastic creases.