Numerical simulation of magnetic flux leakage detection of ferromagnetic materials based on magneto-mechanical effect
CSTR:
Author:
Affiliation:

(1.Key Laboratory of High Efficiency and Clean Mechanical Manufacture(Shandong University), Ministry of Education, Jinan 250061, China; 2.School of Mechanical Engineering, Shandong University, Jinan 250061, China)

Clc Number:

TM271/TG115.27

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    To describe the nonlinear magneto-mechanical coupling effect of materials more accurately, a coupled magneto-elastic model and a variable stiffness model were proposed based on nonlinear magneto-strictive strain equation, effective field theory, and energy balance equation. The magneto-mechanical effects and variable stiffness effects of ferromagnetic materials were studied, and the theoretical results of the nonlinear magnetization model were coupled with the simulation process using numerical analysis software. The results showed that the defect leakage field distribution obtained by the simulation was consistent with the existing research results, which verified the feasibility and accuracy of the proposed model and simulation method. The effects of stress, defect size, and defect location on the surface magnetic field were also analyzed. The results showed that under the action of tensile load, the normal magnetic field signal on the surface of the sample was like an S-shaped curve, and the tangential signal was like a conical curve, and its extreme values first decreased and then increased with the increase in the load. When there was a defect in the sample, the signals obtained on different acquisition paths were very different, and the peak value of the leakage magnetic field on the defect edge path was negatively correlated with the defect length, but the peak distance and span were opposite. On the collection route far from the defect, the peak value and span of the leakage magnetic field signal were positively correlated with the defect length.

    Reference
    Related
    Cited by
Get Citation
Related Videos

Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:January 19,2022
  • Revised:
  • Adopted:
  • Online: January 08,2023
  • Published:
Article QR Code