Effect of cohesive sediment gradation on cavitation and cavitation erosion in high velocity flow
CSTR:
Author:
Affiliation:

(College of Civil Engineering, Zhejiang University of Technology, Hangzhou 310023, China)

Clc Number:

TU398.9

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    To study the effect and mechanism of cohesive sediment gradation on cavitation and cavitation erosion in high velocity flow, we selected two cohesive sediment gradation curves and conducted research in a self-developed small looped water tunnel. Sediment-laden flows with different mass percentages of cohesive sediment smaller than a certain grain size were prepared, and the real-time pressure within cavitation and cavitation erosion zones in working section of water tunnel was measured by a dynamic pressure data acquisition system. Concrete specimens with different mix proportions were prepared. Tests of cavitation erosion on the concrete specimens under different mass percentages of cohesive sediment smaller than a certain grain size were carried out for 4 h. The mass loss of concrete specimen per hour was adopted to characterize the cavitation erosion amount . Results show that the time-averaged pressure and cavitation number at each measurement point in the cavitation erosion zone of the working section of water tunnel gradually increased with the decrease in the mass percentage of cohesive sediment smaller than a certain grain size. With the decrease in the mass percentage of cohesive sediment smaller than a certain grain size, the cavitation erosion amount of concrete specimens gradually increased. The anti-cavitation erosion capacity of concrete specimens with higher strength was significantly greater than that with lower strength at the same flow velocity. Cavitation zone was mainly located in the front of the specimen at lower velocity, while it was located in the rear at higher velocity. Under the same sediment concentration, the higher the percentage of cohesive fine grain used in the test, the greater the cavitation erosion amount was.

    Reference
    Related
    Cited by
Get Citation
Related Videos

Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:February 15,2022
  • Revised:
  • Adopted:
  • Online: January 08,2023
  • Published:
Article QR Code