Abstract:The rapid development and extensive application of ships highlight the vital role of the analysis and control of ship deck flow field. To improve the flow field of ship deck, a novel active flow control method based on jet is proposed, and by taking the position of helicopter rotor disk as an example, the effect of different jet device parameters on the optimization of helicopter rotor disk flow field is analyzed. First, the numerical simulation model of the flow field of the ship deck was established to examine the influence of active flow control on the ship deck flow field based on the Navier-Stokes equation. Then, the k-ε turbulence model was chosen and the effectiveness of the method was validated. Finally, the streamline and velocity distribution of ship deck flow field with jet device were simulated. Combined with the influence of flow field information on rotor force, the flow control effect of jet device on ship deck flow field was compared and analyzed. The results show that the addition of upper jet can reduce the influence range of reflux zone in the deck flow field and the velocity gradient of rotor disk flow field accordingly. The reduction of the velocity gradient of the rotor disk flow field tends to effectively reduce the aerodynamic variation and the response of the rotor. Adding jet devices under different inflow angles may reduce the response and improve the safety of the helicopter by controlling the deck flow field. As the jet velocity exerts a significant influence on the flow field control effect, the optimal jet velocity should be selected with reference to the installation position of the jet device to achieve better control effect.