A radiation hardened NAND gate against single-event transient in advanced CMOS process
CSTR:
Author:
Affiliation:

(1.Xi’an Microelectronics Technology Institute, Xi’an 710065, China; 2.National Key Laboratory of Science and Technology on Radiation-Hardened Integrated Circuits (Xi’an Microelectronics Technology Institute), Xi’an 710065, China)

Clc Number:

TN43

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    The development of advanced nano-integrated circuit processes has led to a decreasing threshold charge in microelectronic devices, resulting in an increased rate of soft errors caused by single-event effects in digital circuits. To enhance the radiation resistance of standard cells in integrated circuits, this paper proposes a NAND gate structure that is resistant to single-event transients (SETs). In the triple well process, by shorting the substrate and source of each NMOS transistor in the pull-down network, the radiation resistance of the NAND gate was effectively improved, and the hardening of the proposed NAND gate became more effective as the number of inputs increased. Particle incidence simulation experiments were performed by Sentaurus TCAD software in hybrid simulation mode. For the NMOS transistor connected to the output node, the three-dimensional physical model that has been calibrated by the process was used, and the Spice model provided by the manufacturer was adopted for other MOS transistors. Simulation results show that the proposed two-input NAND in 40 nm process could reduce the output voltage fluctuation amplitude in three-input cases at the linear energy transfer (LET) value of incidence particle of 10 MeV·cm2/mg. Besides, the effect of immunity to single particle incidence was achieved in the input mode with N2 transistor closed. For the hardened three-input NAND gate, the output voltage disturbance could be reduced by up to 85.4% even in the “worst case”. Therefore, the proposed hardening method for NAND gate has a significant effect against SET.

    Reference
    Related
    Cited by
Get Citation
Related Videos

Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:September 28,2021
  • Revised:
  • Adopted:
  • Online: April 25,2023
  • Published:
Article QR Code