Comparative study of shear capacity calculation methods for RCS hybrid connections
CSTR:
Author:
Affiliation:

(1.College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China; 2.The Architectural Design and Research Institute of Zhejiang University Co. Ltd., Hangzhou 310027, China; 3.Center for Balance Architecture, Zhejiang University, Hangzhou 310027, China)

Clc Number:

TU398.9;TU312.1

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    To investigate widely applicable shear capacity calculation methods of reinforced concrete column-steel beam (RCS) hybrid connection, this study analyzed the shear failure experimental data of RCS connections in recent years. The experimental results were compared with the calculation results of Chinese specification, Nishiyama method, Parra method, and ASCE guideline, and the parametric applicability of each method was discussed. The comparison results showed that all the four methods had engineering value. The minimum discreteness of the results of Parra method was obtained, and the calculation process of Chinese specification was the simplest. The results of parametric study showed that all the four methods were suitable for connections with different stirrup ratios and positions. However, conservative estimates were obtained for specimens with small axial load ratios (from 0 to 0.2) and column-through connections. For the Chinese specification, the predicted strength of connections with concrete strength higher than 60 MPa was unsafe, while the predicted strength of connections with transverse beams was conservative. Therefore, it is suggested to introduce concrete strength coefficient and confined coefficient of transverse beam into the equation considering the influence of these two factors.

    Reference
    Related
    Cited by
Get Citation
Related Videos

Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:May 08,2022
  • Revised:
  • Adopted:
  • Online: December 29,2023
  • Published:
Article QR Code