Experimental on beam-slab fusion prefabricated double channel steel-concrete composite slab
CSTR:
Author:
Affiliation:

(1.School of Civil Engineering, Central South University, Changsha 410075, China; 2.China National Engineering Laboratory of High-Speed Railway Construction Technology, Changsha 410075, China; 3. 3rd Construction Co. Ltd. of China Construction 5th Engineering Bureau, Changsha 410004, China)

Clc Number:

TU398.9;TU317.1

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    In order to give full play to the advantages of the high degree of industrialization of assembly and the excellent mechanical properties of steel-concrete composite structures, a kind of assembled double-slotted channel steel-concrete composite floor slab was proposed. Three groups of simply supported composite floor slab specimens were tested under four-point loading, and the mechanical properties of the composite floor slab under vertical static load were studied. The development law of floor cracks, deflection and strain (steel bar, steel beam, concrete slab) with load was analyzed. Based on the limit equilibrium method, the bearing capacity calculation formula considering the tensile membrane effect and stiffness strengthening coefficient was proposed. The results showed that the deformation of the composite slab is characterized by two-way slab. When the specimens are destroyed, the corner cracks and arc cracks appear on the top of the slab, the central area of the concrete slab bottom shows mesh cracks and oblique cracks extending to the corner, and the plastic bending of the double main girder occurs. When the center deflection of the floor reaches l0/40, the load of the specimens is 327.63 kN, 436.92 kN and 406.12 kN respectively, and the bearing capacity of the composite floor is higher. The strain development of the steel bar is larger in the direction perpendicular to the steel beam and yields along the plastic hinge line. The calculation formula considering the tensile membrane effect and the stiffness strengthening coefficient is in good agreement with the test results, and the load-deflection curve of the floor is accurately predicted.

    Reference
    Related
    Cited by
Get Citation
Related Videos

Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:May 05,2023
  • Revised:
  • Adopted:
  • Online: December 29,2023
  • Published:
Article QR Code