Mechanism of autogenous shrinkage of hybrid calcium oxide and sodium carbonate-activated slag mortars
CSTR:
Author:
Affiliation:

(1.College of Civil Engineering, Fuzhou University, Fuzhou 350108, China; 2.College of Civil and Transportation Engineering, Hohai University, Nanjing 210098, China)

Clc Number:

TU578.1

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    To investigate the mechanism of the effect of calcium oxide and sodium carbonate activated slag on the autogenous shrinkage of alkali-activated cement, an alkali-activated slag martar (AM) was prepared using calcium oxide and sodium carbonate (molar ratio of 1∶1) as the combined activator. The effect of combined activator Na2O equivalent (i.e. the by weight ratio of Na2O produced by the reaction of the combined activators to slag, i.e. 2.5%, 4.5%, 6.5% and 8.5%) on the autogenous shrinkage of AM was investigated. The hydration products and microstructure were characterized by X-ray diffraction, thermogravimetric analysis, mercury intrusion porosimetry, and nuclear magnetic resonance. The results indicate that with the increase of Na2O equivalent, the increase of water consumption due to the reaction of activators and pore structure refinement leads to the increase of pore pressure, and the amount of absorbed Na+ increases due to the increase of amount of Si4+ in C-(A)-S-H replaced by Al3+, resulting in the increase of C-(A)-S-H slippage. The increase of hydration degree induces the increase of the amount of hydration products, resulting in the increase of the autogenous shrinkage. AM with Na2O equivalent of 6.5% is the best group with its mechanical properties higher than those of ordinary Portland cement mortar (OM), but its autogenous shrinkage greater than that of OM due to its lower crystal content and denser pore structure.

    Reference
    Related
    Cited by
Get Citation
Related Videos

Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:October 12,2022
  • Revised:
  • Adopted:
  • Online: January 20,2024
  • Published:
Article QR Code