Design of a novel coil structure for dynamic wireless power transfer
CSTR:
Author:
Affiliation:

(1.School of Electrical Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China; 2.School of Electrical Engineering, Yanshan University, Qinhuangdao 066004, Hebei, China)

Clc Number:

TM724

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    To improve the voltage and power fluctuations arising from large spacing between the trarsmitting arrays in the dynamic wireless power transfer (DWPT) systems, this paper proposes a novel transmitting structure. Firstly, based on the bipolar pad (BPP) coil structure, the domination transmitter (Dtx) coil and the compensation (Cx) coil are connected serially to form a transmission segment. The DWPT system adopts segment control to minimize losses. Secondly, decoupling capacitors are used to decouple the Dtx coil and Cx coils, and the circuit principles of the system are analyzed. Then, the coupling structure is optimized and designed using Ansys Maxwell finite element analysis software, and the optimal switching positions are selected to minimize power fluctuations. Finally, an experimental platform is set up to validate the feasibility of the structure. The experimental results show that the power fluctuation of the new magnetic coupling structure is 3.9%, and the voltage fluctuation is 2.9%. Compared with the previous coupling structure, the power fluctuation has decreased by 15.8%, and the voltage fluctuation has decreased by 7.6%. In the transition region between adjacent Dtx coils, compared with the improved coupling structure, the power output has increased by 33.8%, with the system′s transmission efficiency stabilizing around 88%. The proposed novel transmitting structure in this paper helps reduce the fluctuations in output voltage and power during the movement process, and provides a theoretical support for the design and application of magnetic coupling structures.

    Reference
    Related
    Cited by
Get Citation
Related Videos

Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:April 24,2024
  • Revised:
  • Adopted:
  • Online: September 11,2024
  • Published:
Article QR Code