Abstract:In order to accurately predict the actual consolidation rate of soil layer, based on Gibson′s large-stain consolidation theory, a model for the large-strain nonlinear consolidation of soft soils has been developed with consideration of the nonlinear compressibility and permeability characteristics and the time-dependent drainage boundary condition of soils. On this basis, explicit analytical solutions for the large strain nonlinear consolidation model under single-stage and multi-stage loading can be derived. By using the obtained analytical solutions, the influence of interface parameters on consolidation behavior are analyzed. The results indicate that the influence of external loading on the dissipation of excess pore water pressure in soil is that the excess pore water pressure dissipates faster with increasing the loading, but the value of loading has no influence on the final dissipation time of excess pore water pressure. Besides, the influence of parameter Ic(α-2) on soil consolidation behavior is that the consolidation rate changes with the change of parameter values. It is worth noting that the influence of parameter values describing nonlinear behavior of soil on consolidation behavior is delayed under the time-dependent drainage boundary. The time-dependent drainage boundary under different values of interface parameter reflects the actual permeability of soil boundary better. In practical engineering, the corresponding interface parameters can be inversely investigated according to the actual dissipation rate of excess pore water pressure, so as to accurately predict the consolidation process of soil layer.